9. **REASONING** Let due east be chosen as the positive direction. Then, when both forces point due east, Newton's second law gives

\[
\frac{F_A + F_B}{\Sigma F} = ma_i
\]

where \(a_i = 0.50 \text{ m/s}^2 \). When \(F_A \) points due east and \(F_B \) points due west, Newton's second law gives

\[
\frac{F_A - F_B}{\Sigma F} = ma_2
\]

where \(a_2 = 0.40 \text{ m/s}^2 \). These two equations can be used to find the magnitude of each force.

SOLUTION

a. Adding Equations 1 and 2 gives

\[
F_A = m(a_i + a_2) = \frac{(8.0 \text{ kg})(0.50 \text{ m/s}^2 + 0.40 \text{ m/s}^2)}{2} = 3.6 \text{ N}
\]

b. Subtracting Equation 2 from Equation 1 gives

\[
F_B = m(a_i - a_2) = \frac{(8.0 \text{ kg})(0.50 \text{ m/s}^2 - 0.40 \text{ m/s}^2)}{2} = 0.40 \text{ N}
\]

17. **REASONING** We first determine the acceleration of the boat. Then, using Newton's second law, we can find the net force \(\Sigma F \) that acts on the boat. Since two of the three forces are known, we can solve for the unknown force \(F_W \) once the net force \(\Sigma F \) is known.

SOLUTION Let the direction due east be the positive \(x \) direction and the direction due north be the positive \(y \) direction. The \(x \) and \(y \) components of the initial velocity of the boat are then

\[
v_{0x} = (2.00 \text{ m/s}) \cos 15.0^\circ = 1.93 \text{ m/s}
\]

\[
v_{0y} = (2.00 \text{ m/s}) \sin 15.0^\circ = 0.518 \text{ m/s}
\]
Thirty seconds later, the x and y velocity components of the boat are
\[\begin{align*}
 v_x &= (4.00 \text{ m/s}) \cos 35.0^\circ = 3.28 \text{ m/s} \\
 v_y &= (4.00 \text{ m/s}) \sin 35.0^\circ = 2.29 \text{ m/s}
\end{align*} \]

Therefore, according to Equations 3.3a and 3.3b, the x and y components of the acceleration of the boat are
\[\begin{align*}
 a_x &= \frac{v_x - v_{0x}}{t} = \frac{3.28 \text{ m/s} - 1.93 \text{ m/s}}{30.0 \text{ s}} = 4.50 \times 10^{-2} \text{ m/s}^2 \\
 a_y &= \frac{v_y - v_{0y}}{t} = \frac{2.29 \text{ m/s} - 0.518 \text{ m/s}}{30.0 \text{ s}} = 5.91 \times 10^{-2} \text{ m/s}^2
\end{align*} \]

Thus, the x and y components of the net force that act on the boat are
\[\begin{align*}
 \sum F_x &= ma_x = (325 \text{ kg}) (4.50 \times 10^{-2} \text{ m/s}^2) = 14.6 \text{ N} \\
 \sum F_y &= ma_y = (325 \text{ kg}) (5.91 \times 10^{-2} \text{ m/s}^2) = 19.2 \text{ N}
\end{align*} \]

The following table gives the x and y components of the net force \(\sum F \) and the two known forces that act on the boat. The fourth row of that table gives the components of the unknown force \(F_W \).

<table>
<thead>
<tr>
<th>Force</th>
<th>x-Component</th>
<th>y-Component</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sum F)</td>
<td>14.6 N</td>
<td>19.2 N</td>
</tr>
<tr>
<td>(F_1)</td>
<td>((31.0 \text{ N}) \cos 15.0^\circ = 29.9 \text{ N})</td>
<td>((31.0 \text{ N}) \sin 15.0^\circ = 8.02 \text{ N})</td>
</tr>
<tr>
<td>(F_2)</td>
<td>(-(23.0 \text{ N}) \cos 15.0^\circ = -22.2 \text{ N})</td>
<td>(-(23.0 \text{ N}) \sin 15.0^\circ = -5.95 \text{ N})</td>
</tr>
</tbody>
</table>

\[\begin{align*}
 F_W &= \sum F - F_1 - F_2 \\
 &= 14.6 \text{ N} - 29.9 \text{ N} + 22.2 \text{ N} = 6.9 \text{ N} \\
 &= 19.2 \text{ N} - 8.02 \text{ N} + 5.95 \text{ N} = 17.1 \text{ N}
\end{align*} \]

The magnitude of \(F_W \) is given by the Pythagorean theorem as
\[F_W = \sqrt{(6.9 \text{ N})^2 + (17.1 \text{ N})^2} = 18.4 \text{ N} \]
The angle \(\theta \) that \(\mathbf{F}_W \) makes with the \(x \) axis is

\[
\theta = \tan^{-1}\left(\frac{17.1 \text{ N}}{6.9 \text{ N}}\right) = 68^\circ
\]

Therefore, the direction of \(\mathbf{F}_W \) is \(68^\circ \), north of east.

29. **REASONING AND SOLUTION** There are two forces that act on the balloon; they are, the combined weight of the balloon and its load, \(Mg \), and the upward buoyant force \(F_B \). If we take upward as the positive direction, then, initially when the balloon is motionless, Newton's second law gives \(F_B - Mg = 0 \). If an amount of mass \(m \) is dropped overboard so that the balloon has an upward acceleration, Newton's second law for this situation is

\[
F_B - (M - m)g = (M - m)a
\]

But \(F_B = mg \), so that

\[
Mg - (M - m)g = mg = (M - m)a
\]

Solving for the mass \(m \) that should be dropped overboard, we obtain

\[
m = \frac{Ma}{g + a} = \frac{(310 \text{ kg})(0.15 \text{ m/s}^2)}{9.80 \text{ m/s}^2 + 0.15 \text{ m/s}^2} = 4.7 \text{ kg}
\]

69. **REASONING** The speed of the skateboarder at the bottom of the ramp can be found by solving Equation 2.9 \(v^2 = v_0^2 + 2ax \) where \(x \) is the distance that the skater moves down the ramp) for \(v \). The figure at the right shows the free-body diagram for the skateboarder. The net force \(\Sigma F \), which accelerates the skateboarder down the ramp, is the component of the weight that is parallel to the incline: \(\Sigma F = mg \sin \theta \). Therefore, we know from Newton's second law that the acceleration of the skateboarder down the ramp is

\[
a = \frac{\Sigma F}{m} = \frac{mg \sin \theta}{m} = g \sin \theta
\]

SOLUTION Thus, the speed of the skateboarder at the bottom of the ramp is

\[
v = \sqrt{v_0^2 + 2ax} = \sqrt{v_0^2 + 2gx \sin \theta} = \sqrt{(2.6 \text{ m/s})^2 + 2(9.80 \text{ m/s}^2)(6.0 \text{ m}) \sin 18^\circ} = 6.6 \text{ m/s}
\]