Using Recursion

The Recursion Pattern

- **Recursion**: when a method calls itself
- Classic example--the factorial function:
 - \(n! = 1 \cdot 2 \cdot 3 \cdots (n-1) \cdot n \)
- Recursive definition:
 \[
 f(n) = \begin{cases}
 1 & \text{if } n = 0 \\
 n \cdot f(n-1) & \text{else}
 \end{cases}
 \]
- As a Java method:
  ```java
  // recursive factorial function
  public static int recursiveFactorial(int n) {
    if (n == 0) return 1; // basis case
    else return n * recursiveFactorial(n - 1); // recursive case
  }
  ```

Linear Recursion

- **Test for base cases**
 - Begin by testing for a set of base cases (there should be at least one).
 - Every possible chain of recursive calls **must** eventually reach a base case, and the handling of each base case should not use recursion.
- **Recur once**
 - Perform a single recursive call
 - This step may have a test that decides which of several possible recursive calls to make, but it should ultimately make just one of these calls.
 - Define each possible recursive call so that it makes progress towards a base case.

Example of Linear Recursion

Algorithm `LinearSum(A, n)`:

Input:
A integer array `A` and an integer `n = 1`, such that `A` has at least `n` elements

Output:
The sum of the first `n` integers in `A`

- if `n = 1` then
 - return `A[0]`
- else
 - return `LinearSum(A, n - 1) + A[n - 1]`

Example recursion trace:
Reversing an Array

Algorithm ReverseArray(A, i, j):

Input: An array A and nonnegative integer indices i and j

Output: The reversal of the elements in A starting at index i and ending at j

if $i < j$ then
 Swap $A[i]$ and $A[j]$
 ReverseArray(A, $i + 1$, $j - 1$)
return

Defining Arguments for Recursion

- In creating recursive methods, it is important to define the methods in ways that facilitate recursion.
- This sometimes requires we define additional parameters that are passed to the method.
- For example, we defined the array reversal method as `ReverseArray(A, i, j)`, not `ReverseArray(A)`.

Computing Powers

- The power function, $p(x,n)=x^n$, can be defined recursively:

 $p(x,n)=\begin{cases} 1 & \text{if } n=0 \\ x \cdot p(x,n-1) & \text{else} \end{cases}$

- This leads to an power function that runs in $O(n)$ time (for we make n recursive calls).
- We can do better than this, however.

Recursive Squaring

- We can derive a more efficient linearly recursive algorithm by using repeated squaring:

 $p(x,n) = \begin{cases} 1 & \text{if } x = 0 \\ x \cdot p(x, (n-1)/2)^2 & \text{if } x > 0 \text{ is odd} \\ p(x,n/2)^2 & \text{if } x > 0 \text{ is even} \end{cases}$

- For example,
 - $2^4 = 2^{(4/2)} = (2^{4/2})^2 = (2^2)^2 = 4^2 = 16$
 - $2^5 = 2^{1+(4/2)} = 2(2^{4/2})^2 = 2(2^2)^2 = 2(4^2) = 32$
 - $2^6 = 2^{(6/2)} = (2^{6/2})^2 = (2^3)^2 = 8^2 = 64$
 - $2^7 = 2^{1+(6/2)} = 2(2^{6/2})^2 = 2(2^3)^2 = 2(8^2) = 128$.

Recursive Squaring Method

Algorithm `Power(x, n):

 Input: A number x and integer n = 0
 Output: The value x^n

 if $n = 0$ then
 return 1
 if n is odd then
 $y = Power(x, (n - 1)/2)$
 return $x \cdot y \cdot y$
 else
 $y = Power(x, n/2)$
 return $y \cdot y$

Analysis

Algorithm `Power(x, n):

 Input: A number x and integer n = 0
 Output: The value x^n

 if $n = 0$ then
 return 1
 if n is odd then
 $y = Power(x, (n - 1)/2)$
 return $x \cdot y \cdot y$
 else
 $y = Power(x, n/2)$
 return $y \cdot y$

Each time we make a recursive call we halve the value of n; hence, we make log n recursive calls. That is, this method runs in $O(\log n)$ time.

It is important that we use a variable twice here rather than calling the method twice.

Tail Recursion

- Tail recursion occurs when a linearly recursive method makes its recursive call as its last step.
- The array reversal method is an example.
- Such methods can be easily converted to non-recursive methods (which saves on some resources).
- Example:
 Algorithm `IterativeReverseArray(A, i, j):

 Input: An array A and nonnegative integer indices i and j
 Output: The reversal of the elements in A starting at index i and ending at j

 while $i < j$ do
 Swap $A[i]$ and $A[j]$
 $i = i + 1$
 $j = j - 1$
 return

Binary Recursion

- Binary recursion occurs whenever there are two recursive calls for each non-base case.
- Example: the `DrawTicks` method for drawing ticks on an English ruler.
A Binary Recursive Method for Drawing Ticks

```java
public static void drawOneTick(int tickLength) { drawOneTick(tickLength, -1); } // draw one tick public static void drawOneTick(int tickLength, int tickLabel) {
    for (int i = 0; i < tickLength; i++)
        System.out.print(“|”);
    if (tickLabel != 0) System.out.println(“ ” + tickLabel);
    System.out.println("n");
}
public static void drawTicks(int tickLength) {
    // draw ticks of given length
    if (tickLength > 0) {
        drawOneTick(tickLength, -1); // recursively draw left ticks
        drawOneTick(tickLength); // draw center tick
        drawTicks(tickLength - 1); // recursively draw right ticks
    }
}
public static void drawRuler(int nInches, int majorLength) {
    // draw ruler
    drawOneTick(majorLength, 0); // draw tick 0 and its label
    for (int i = 1; i <= nInches; i++)
        drawTicks(majorLength - 1); // draw ticks for this inch
    drawOneTick(majorLength, i); // draw tick i and its label
}
```

Another Binary Recursive Method

- **Problem:** add all the numbers in an integer array A:

  ```java
  Algorithm BinarySum(A, i, n):
  Input: An array A and integers i and n
  Output: The sum of the n integers in A starting at index i
  if n = 1 then
      return A[i]
  return BinarySum(A, i, n/2) + BinarySum(A, i + n/2, n/2)
  ```

- **Example trace:**

```
0, 1
0, 2
2, 2
2, 11, 10, 1
0, 8
0, 2
7, 1
6, 2
4, 4
6, 15, 1
4, 2
4, 1
```

Computing Fibonacci Numbers

- **Fibonacci numbers are defined recursively:**

 \[F_0 = 0 \]

 \[F_1 = 1 \]

 \[F_i = F_{i-1} + F_{i-2} \quad \text{for} \ i > 1. \]

- **Recursive algorithm (first attempt):**

  ```java
  Algorithm BinaryFib(k):
  Input: Nonnegative integer k
  Output: The kth Fibonacci number F_k
  if k = 1 then
      return k
  else
      return BinaryFib(k - 1) + BinaryFib(k - 2)
  ```

Analysis

- **Let n_k be the number of recursive calls by BinaryFib(k):**
 - \(n_0 = 1 \)
 - \(n_1 = 1 \)
 - \(n_2 = n_1 + n_0 + 1 = 1 + 1 + 1 = 3 \)
 - \(n_3 = n_2 + n_1 + 1 = 3 + 1 + 1 = 5 \)
 - \(n_4 = n_3 + n_2 + 1 = 5 + 3 + 1 = 9 \)
 - \(n_5 = n_4 + n_3 + 1 = 9 + 5 + 1 = 15 \)
 - \(n_6 = n_5 + n_4 + 1 = 15 + 9 + 1 = 25 \)
 - \(n_7 = n_6 + n_5 + 1 = 25 + 15 + 1 = 41 \)
 - \(n_8 = n_7 + n_6 + 1 = 41 + 25 + 1 = 67. \)

- **Note that n_k at least doubles every other time**
 - **That is, n_k > 2^{k/2}. It is exponential!**
A Better Fibonacci Algorithm

- Use linear recursion instead

Algorithm LinearFibonacci(k):

Input: A nonnegative integer k

Output: Pair of Fibonacci numbers \((F_k, F_{k-1})\)

if \(k = 1\) then

return \((k, 0)\)

else

\((i, j) = \text{LinearFibonacci}(k - 1)\)

return \((i + j, i)\)

- LinearFibonacci makes \(k - 1\) recursive calls

Multiple Recursion

- Motivating example:
 - Summation puzzles
 - pot + pan = bib
 - dog + cat = pig
 - boy + girl = baby

- Multiple recursion:
 - makes potentially many recursive calls
 - not just one or two

Algorithm for Multiple Recursion

Algorithm PuzzleSolve(k,S,U):

Input: Integer k, sequence S, and set U (universe of elements to test)

Output: Enumeration of all k-length extensions to S using elements in U without repetitions

for all \(e \in U\) do

Remove e from U \{e is now being used\}

Add e to the end of S

if \(k = 1\) then

Test whether S is a configuration that solves the puzzle

if S solves the puzzle then

return “Solution found: ” S

else

PuzzleSolve(k - 1, S,U)

Add e back to U \{e is now unused\}

Remove e from the end of S

Example

cbb + ba = abc

799 + 98 = 997

\(a, b, c\) stand for 7, 8, 9; not necessarily in that order

a, b, c might be able to stop sooner

Slide by Matt Stallmann included with permission.
Visualizing PuzzleSolve

PuzzleSolve (3,(),{a,b,c})

Initial call

PuzzleSolve (2,c,{a,b})
PuzzleSolve (2,b,{a,c})
PuzzleSolve (2,c,{a,b})
PuzzleSolve (1,ab,{c})
PuzzleSolve (1,bc,{a})
PuzzleSolve (1,ba,{c})
PuzzleSolve (1,ca,{b})
PuzzleSolve (1,bc,{a})
PuzzleSolve (1,ba,{c})
PuzzleSolve (1,cb,{a})
PuzzleSolve (1,ca,{b})
PuzzleSolve (1,ba,{c})
PuzzleSolve (1,cb,{a})